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Abstract-It is useful to have the dual formulation to the usual compatible element model in order to provide
bounds on the exact solution. An element whose stress field satisfies the equilibrium differential equations and
which is connected to the adjoining elements in such a manner as to provide continuity of the stress vector across
all boundaries furnishes the desired dual.

A suitable equilibrium model is formulated for use in a routine manner in the finite element scheme. Guidelines
for the formulation of other elements are given and the causes oftroubles which have plagued earlier investigators
are isolated.

Numerical results are given which serve to illustrate and validate the ideas presented.

1. INTRODUCTION

THE finite element method in continuum mechanics is most often discussed in terms of
displacements. This is done since it is easy to relate trial displacement fields to the behavior
of the "nodes" of each element. The required relationships between element nodes, i.e.,
the compatibility relationships, are also easily written down providing the necessary trial
solutions for a Rayleigh-Ritz approach.

For such a formulation (whether finite elements or not) it has long been recognized
(see e.g. Synge [1]) that if the trial displacement fields are taken such as to satisfy compat­
ibility throughout the domain, then the solution will provide a bound to the true solution.
The opposite bound is provided by ensuring that the trial solutions satisfy equilibrium.
This result also has been recognized [1] but has been little employed due to the more difficult
task (in details, not conception) of providing trial solutions which satisfy equilibrium and
the stress type boundary conditions exactly.

From a "finite element" point of view the equilibrium approach has been studied in
depth only by Fraeijs de Veubeke [2--4]. In this earlier work Fraeijs de Veubeke encoun­
tered problems in the application of the simple, constant stress field. These problems were
of the nature of singularities in the assembled stiffness matrix. These problems were
explained by the concept of the "kinematic mode". Special procedures were devised to
overcome the problem and applications ofa quadrilateral element made up of four constant
stress triangles are given in [5]. In a very recent paper [6], Fraeijs de Veubeke and Zien­
kiewicz make use of the analogy between the Airy stress function and the lateral displace­
ment of a plate to indicate how suitable two dimensional stress equilibrium models may be
generated from completely compatible plate bending displacement models. Then, as they
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mention, this leads the way to a quadrilateral equilibrium element based on Fraeijs de
Veubeke's plate bending quadrilateral. The particular element used as an example herein,
which is developed completely and directly from an equilibrium point of view, is almost
the dual of the triangular compatible element of Clough and Toucher [7]. The difference
is related to the fact that Clough and Toucher left out one of the polynominal terms in the
displacement expansion in order to achieve a linear variation of ow/on along the exterior
boundaries of the element. This duality broadens the interest of the work herein since the
fundamental necessity for the element grouping is shown to be related to the symmetry of
the stress tensor and the demand for independent external degrees of freedom.

Morley [8J, making use of the same analogy mentioned above, has given an equilib­
rium element, in the sense of Kirchhoff theory, for the plate bending problem. This element
is the analog of a compatible two dimensional elasticity element of which there are several
to chose from.

The authors are indebted to the referees for bringing [5J, [6J and [8J to their attention.
Others who have dealt with equilibrium models are Hessel [9J and Shubinski [IOJ.

Both utilized a nine block assembly of rectangles to form a "building block" element.
However, for reasons which are brought out later, these elements have problems, most of
which are associated with meeting traction boundary conditions. In addition, these ele­
ments are rather poor from a computational point of view.

In order to best illustrate the usage ofequilibrium models, it is advantageous to restrict
the discussion to the simplest class of problems that still exhibit the general properties of
the procedure. In this paper the static generalized plane stress problem with no body
forces will be used although it should be noted that the extension to three dimensions is
direct.

2. DEVELOPMENT OF THE EQUILmRIUM STRESS MODEL

First, a comment on notation is in order. Any explicit formulation of a finite element
scheme requires many types of super-scripts or subscripts. Tensors, of course, also utilize
subscripts and the reader is expected to be able to make all necessary distinctions. Summa­
tion convention for repeated indices will be used whether the subscripted quantities are
tensor components or not. Finally, it is noted that where tensors are used, Cartesian tensors
are implied.

Consider the domain to be divided into E triangular elements. The geometrical approx­
imations necessary at the boundary ofthe domain are the usual necessary for finite element
schemes. Within each element the state of stress will be approximated by a family of Me
simple stress solutions, I{Jl'l, (k = 1 to Me), i.e., within each element the possible stress field is
given by

(I)

where each 1{J1~) satisfies:

(I a)

(1 b)

(lc)
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The comma in the last expression above indicates the partial derivative with respect to Xj.

This notation will be used without comment from here on. For simplicity each element is
assumed to have the same number and type of trial stress solutions. The parameters, S(k),

appearing in equation (I) are referred to as "generalized stresses."
A suitable set of l/Jij satisfying the above for the two-dimensional case may be found by

use of the classical Airy stress function. For the models herein this stress function is taken as:

where

E = elastic modulus of the material
Eo = dimensionless constant of magnitude equal to reference modulus
A = area of element.

This stress function leads to the following seven trial stress solutions:

n
0 0 0 Xl 0 :,]E

JAl/J = [l/J(l)l/J(2) ... ] = 0 Xl 0 X2
- - J(AE}o

0 JA 0 -X2 -Xl

where

t\'I}'ilk) = l/J(k)
22 .

l/J(k)
12

Equation (1) now takes the form:

(3)

(/), j'l1l'22 = l/J

, 12 lth element

j
S(l)l
• (I)

. = l/JS.

S( 7
) llh e lemen t

(4)

Notice that due to the low order of the polynomials involved in <I> that it satisfies the
biharmonic equation trivially which means that the resulting strain field will be compatible.
This is not required in the formulation, but is desirable and aids in interpretation ofdisplace­
ment information supplied by the solution.

Use is now made of the Theorem of Minimum Complementary Energy. The form ofthe
theorem is the same as given by Sokolnikoff [11]. However, it is necessary to generalize the
theorem slightly to include the case where the trial stress solutions are only piecewise
continuous (plus other restrictions as set forth below). A statement of the theorem follows:

The complementary energy, n*, defined below attains a minimal value for the true
stress field.

1 E f (/) (I) E f
n* = -2 L !T§;.-l! dV- L 'I;ujdA

1= 1 V(I) 1= 1

surface of Ith element

where II; is prescribed.

(5)
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A bar over a quantity indicates that it is prescribed and li- 1 is the matrix of elastic con­
stants of the material. tij must be a trial stress field with the properties that

rijE C 1

(Sa)

tij,j = 0

within each of a finite number of subdomains of the body (elements) and must meet the
prescribed traction boundary conditions

(5b)

(v j are the components of the outward unit normal)

on the exterior boundary segments and 1; is continuous from element to element. (This can
be generalized somewhat, see [12].)

Substitution of equation (4) into (5) results in:

1 E (I) (1)(1) E (I) (I)

n* = - L: STf S- L: ST S
2 1=1 -- 1=1 -

(I)

where the kpth member of f is given by

(I) I
fkp = t(Wli- 1t(P)dV

V(l)

k h f
O), • b

and the t component 0 S IS gIven y:

(I) fS (k) = .I,i~)v ·it dS
'l'lJ J

surface of the lth element where U; is
prescribed.

(I)

Utilizing equation (3) leads to the form of [ for the specific example in question:

o:A

f3A aA

0 0 yA
(I) tE

f3xf axf 0 0:t5 1 Symmetricf=-
- Eo

axf f3xf -yx! f3b l (ab l +yb2 )

f3x! o:x! -yxf a0 12 (13 +y)t5 12 (0:15 2 +yc5d

o:x! f3x! 0 1315 12 1315 12 1315 2 0:t5 2

where: t = thickness of element

xf = ~ f Xl dXl dX2
-v A area

(6)

(7)

(8)

(9)

(9a)

(9b)
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x! and J2 are similar to the above and

J12 = ~f Xl X2 dXl dX2
A area

lX, f3, and yare elastic constants given by

lX = 1

f3 = -(1 (1 = Poisson's ratio

y = 2(1+(1)

for plane stress or by

f3 = -(1(l +(1)

y = 2(1 +(1)

(9c)

(9d)

(ge)

for plane strain.
No undue complexity is introduced if the origin is taken at the center of area of the

element so that xf and x! are zero. The axes could be rotated so as to eJiminateb12 also.
However, this last step introduces almost as much complexity as it eliminates from a
computational point of view and will not be done here. Instead, every coordinate system
will be aligned with a single "global" system.

Equation (6) may be rewritten as

n* = t~lf.~- ~T!.. (10)

where the usual finite element notation has been employed, i.e.

and

! ~)s= .
(E)

S

(similar for ...v (lOa)

(lOb)

A question arises regarding the components of s when no displacements are prescribed
on a particular element. For bookkeeping purpo;s the fuU.! is used in the second term
on the right of equation (10) and when no displacements are prescribed, then the corres­
ponding components of.! are given the value of zero. This appears at first to be equivalent
to a prescribed boundary displacement of zero but this condition will be "over-ridden"
later with a constraint on the force vector corresponding to that boundary. This means
that leaving off a force constraint equation is equivalent to prescribing the corresponding
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boundary displacement to be zero. The components of the M x 1 array, §.., will be referred
to as the "generalized displacements".

As it now stands, the form for the generalized displacement, equation (8), is not in a
convenient form for prescribing displacements independently along each boundary. This
will be remedied later.

For the special situation when all (interior as well as exterior) displacement boundary
conditions are specified, the Theorem of Minimum Complementary Energy can be applied
directly since there are no constraints on the components of S, each being a truly independ-
ent parameter. This produces the equation -

which decomposes immediately to E equations of the form

(I)(I) (I)

1.§' = s.

(11)

(11 a)

The latter equation is usually referred to as the force-displacement relation for the element,
To apply the Theorem of Minimum Complementary Energy in the general case to

equation (10) requires some further work since each component of~ no longer is an inde­
pendent parameter representing a solution <Ij satisfying the conditions set forth in equa­
tion (5a) above.

To develop these constraint equations on ~ it is necessary to introduce another set of
parameters~* which describes the state ofstress on each boundary independently, Consider
a single boundary segment of an element Since there are a finite number of independent
trial stress fields (the "'I'» in the element, only a finite number of independent functions will
be needed to describe the components of the stress vector everywhere on this boundary
segment This can be written in equation form as:

(12)

Here T and O{k) are vectors expressed on some suitable basis such as the usual Car­
tesian i, j, k and whose components are functions of the position on the surface of the
element.

For a single boundary segment the number of stress modes, elk), will in general be less
than Me, the number oftrial stress solutions since the "'I') when evaluated on the boundary
segment will no longer be necessarily independent,

The S~) for all the boundary segments of the lth element are ordered into a single
(/)M: x 1 array, ~*, The components of this array must be related to the components of

(I)

~* and in fact must be completely determined by them, Therefore, there must exist a
relation of the form:

(I) (/)(1)

s* = CS (13)
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(I)

f. is a M: x Me array of numbers determined by the choice of "'Wand e\p) and the
geometry of the element.

For the element being developed it can be seen from equation (3) that the stress field is
essentially one of linearly varying character although not strictly so since the components
ofthe stress tensor are coupled due to the equilibrium requirement. It can be seen then that
general nature of the stress vector on a surface is one of linear variation. A convenient
choice of mode shapes is illustrated in Fig. 1.

y

Lx 1

1)<3) = j J
Not shown

1)<4) = pj

FIG. 1. Arbitrary linearly varying stress element showing boundary stress modes used. Parameter p takes
on values from - I to I in moving from node 2 to 3.

Since the character of the stress vector cannot be more complicated than linear, this
choice ofboundary stress modes is sufficient to describe all possible stress vectors and reflec­
tion on equation (3) reveals that the four modes are indeed independent on a single boundary
i.e., any ofthe four boundary stress modes may assume an arbitrary value while the remain­
ing three are unchanged.

The vertices or nodes of the element are numbered one through three in a counter­
clockwise fashion as shown in Fig. 1. The opposite sides are lettered a, b, c respectively.
A coordinate system Xl' X2 is chosen with its origin at the center of area of the triangle and
parallel to a "global" system. The coordinates of the ith vertex are designated Xi' Yi.

To aid in evaluating the stress vector in terms of the element stress field, a parameter p
is introduced which gives a parametric representation of the edge a as:

Xl = !<X2 +X3 )+!P(X3 -X2 )

X2 = !(Y2 + Y3 )+!P(Y3 - Y2 )

(14)

where p takes on values - 1 to 1 to generate the edge a from vertex 2 to vertex 3.
(Q)

To evaluate the stress vector T along the edge a, equations (3), (4), (5b), and (14) are
utilized to obtain:

(Q) E [1 P 0 OJ (a)T - i . CS
- 2L

a
v'(AEo)[ JJ 0 0 1 p--

(15)
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where

(a)

c=
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-2y'A (Yz - Y3) 0 2y'A(Xz -X3 ) 0

0 0 0 0

0 2y'A (X z -X3 ) -2y'A (Yz - Y3) X~-X~

0 0 0 -(XZ -X3 )z

-2(Xz Yz -X3 Y3 )

2(Xz - X 3)(YZ- Y3)

Y~- Y~

-(YZ - Y3)Z

-(X~-X~)

(X z-X 3f
2(X zYZ - X 3 Y3)

-2(Xz -X3)(YZ - Y3)

-(Y~ - Y3 )Z

(YZ - Y3)Z

o
o

(16)

Utilizing the previously defined boundary stress modes the stress vector on side a is
also represented as:

(a) E [1 p
T = y'Eo [i j] 0 0

Comparison of equations (15) and (17) yields:

(17)

1 (CS = 1ss.::1 l.
2Lay'A -- J (18)

The same procedure is applied to sides band c to obtain the desired results:
(I) (I) (/)

c S = S* (13)

where

1 (a)

-cL-a

(I)

c=
1 (b)

-cL b -

1 (c)

-cL-c

(13a)

(b) (c) (a)

f and C are obtained from C by cyclic permutation of the indices.
The set of equations (13) for each element are ordered into a single set for the structure

in the usual fashion.

S* = CS.

The f here is of the same form as the [of equation (10b).

(19)
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With the aid of these boundary stress modes, the prescribed traction boundary condi­
tions, equation (5b), can be met provided the loading is restricted to forces representable
by the boundary stress modes, i.e., the prescribed stress vector is expanded as:

T = R(k)9(k). (20)

This restriction is analogous to the one on displacement boundary conditions in the
compatible element method.

Equations (20) and (12) are now utilized to produce equations of the form:

(21)

The requirement for continuity of the stress vector across the imaginary cut between
elements is expressed as:

T + T = 0
kth element mth element

common boundary common boundary

which results in equations ofthe form:

(22)

(24)

Silh +Su) = R(k) (R(k) is zero here) (23)

The S* components in equation (23) are from the adjoining kth and mth elements as indica­
ted in equation (22). The idea here is trivial but is awkward to express. All ofthe equations
of the form of (21) and (23) are gathered and the components involved are renumbered to
produce a set of equations indicated by:

A* S* = R .
(NXM*)(M.x 1) Nx1

~* is made up of only ones and zeros and expresses the connectivity of the element
system and is easily generated automatically on a digital computer. For the general situa­
tion one includes all of the boundary segments of the elements so that §..* is the full M* x 1
array. Components of B. (N in number) and their corresponding equations are introduced
only where stress boundary conditions exist or across interior "cuts". Introducing equa­
tion (19) into (24) gives:

A*CS = R

or

with:

A S R
(NXM)(MX 1) (Nx!)

A*C = A.

(25)

(25a)

These equations then provide the constraints on §.. so that the prescribed boundary condi­
tions will be met by the trial stress solution.

A more convenient form of generalized displacement will now be introduced. Substitu­
tion of equation (12) into the surface integral of equation (5) gives
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where the kth component of~* for the lth element is given by:

(I) f
S*{k) UiW) dS.

The integral extends only over the appropriate boundary segment.
The above replaces the right hand term of equation (6) so that it reads:

(26)

(27)

Again all components of ~* are carried along for bookkeeping reasons and if displace­
ments are not specified a value of zero is given the corresponding component of ~*.

The situation is now summarized. The quantity n* given by equation (27) is to be
minimized with respect to the parameters §. subject to the constraint conditions expressed
by:

AS = R. (25)

The array j, s*, C, and R are known and the components ofS are the desired unknowns.
The problemis now in'the form of the classical minimization problem with side condi­

tions and two avenues of solution are immediately available. The first, corresponding to
the so-called "force method" in matrix structural analysis, is to utilize the constraint
equations, (25), to eliminate N of the unknowns from the problem and then to proceed
normally with the minimization of n*. See the work of Watwood [12] for further discussions
of this approach.

The other alternative is the introduction of Lagrangian multipliers into the problem,
i.e. to equation (27) is added a term of the form:

!:.T (:.i~-B)
1 x N

where each component of ~ corresponds to an equation in the set of equations (25).
The minimization of n* is now carried out in the usual manner. Algebraically this

proceeds by applying the necessary condition

on*
=0

OS(kl

giving:

i.§,+ AT!: = CT~*.

When equations (25) are added to the above this gives the set:

![<-1<·-1 {<..}~ r~~l

(28)

(29)

I+-M-+I<-N---.I (M+N)x I (M+N)x 1

If desired, the set of equations (29) may be solved directly. This procedure corresponds
to the method advocated by Klein [13] in matrix structural analysis.
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The procedure which leads to the displacement (or stiffness or direct stiffness) method is
to look upon equation (29) as two equations and two unknowns and solve as follows:

~ = _ I-1~T!:.+[-1~T!*

~~ = _~L-1AT).+~r1~T!* = R

A = -K- 1R+K- 1Ar 1CTs*
- - - -- --

where

(30a)

giving finally:

(31)

The reader, familiar with the work of Argyris [14] will immediately recognize the form
of equation (30a) for the stiffness matrix K.

The above procedure is possible only,-of course, if /-1 and K- 1 exist. Due to the
(I) - -

construction of I, finding 1-1 entails finding 1- 1 for every t, i.e. every element. Provided
the stress solutions, the r/J?), are independentfunctions and that the material is not "in-

J (I)

compressible", the resulting / will be nonsingular. For the case of an incompressible
material several possibilities eXISt to overcome the problem, one ofwhich is discussed in [12].

The existence of K- 1 is of more interest since it directly reflects upon the choice of
model used. First of all it can be seen from the form of equation (30a) that A must be of
rank N since the rank of a matrix product is at most equal to the lowest of the ranks of
the two matrices involved in the product. Note that among other things, this demands that
M be greater than or at most equal to N. This requirement shows up in classical structural
analysis in discussions regarding the degree of redundancy (M - N). The fact that (M - N)
is equivalent to the classical degree of redundancy becomes evident when one applies the
ideas herein to a simple beam element. A negative degree of redundancy in the classical
sense means that one has an unstable structure. This situation is quite possible physically
for a "pin-jointed" structure. However, for a continuum such a situation does not exist
physically provided the body is "supported" so that if N exceeds M one must look to the
mathematical model for the problem.

A somewhat more subtle situation occurs when the rows of A_are not independent.
This can be traced directly to the fact that the components of R (or ~* for a structure
composed of a single element) are related by "contraints" aside from overall equilibrium
requirements.

The simplest such constraint occurs at a "corner" or "vertex" of an element. At that
point only one state of stress can exist and the number of the components of the stress
vectors on each "side" of the vertex outnumbers the independent components of the stress
tensor since it is symmetric. This situation is, of course, present with the element being
developed here. Another constraint which may develop is the situation where two imag­
inary "cuts" cross. This latter constraint is similar to the above and both owe their origin to
the symmetry of the stress tensor. It is eliminated a priori in combinations of element
assemblies where the first constraint above has been eliminated, but may occur within
certain building block assemblies such as a quadrilateral.
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Two guidelines are given to overcome the problems with the existence of K - 1 out­
lined above. These are:

(a) The element must have enough independent stress modes on each boundary
segment to react or balance any combination of loads applied on the other boundaries,
i.e., the element must be "supportable" from any single boundary segment. This require­
ment is satisfied by the element being developed but is not for a constant stress element.

(I)

(b) The only constraint on the components of §..* must be the one of overall equilibrium.
This guideline immediately rules out any element which has a vertex in which the compo­
nents of the stress tensor are continuous in the neighborhood of the "tip" of the vertex.
This is overcome by bisecting the vertex with a "cut" across which continuity of the stress
vector only is maintained.

The motivation for the first guideline above is that since a single boundary segment is
finite in length, it should be possible to "support" a group of elements by fixing a single
boundary segment. The motivation for the second can be seen by considering a problem
where the body is approximated by a single element. Here one does not want any constraints
on the permissible loading other than the overall equilibrium requirement when it is
pertinent.

Finally, a convenient criteria for checking possible "building block" elements is that
for an arbitrary assembly of the elements with no specified boundary conditions, the follow­
ing equation should be satisfied:

M-N+r;;::: o. (32)

Here r is the number of independent overall equilibrium equations of the body,
i.e., six for three dimensional problems and three for two dimensional problems. A failure
to meet the condition set by equation (32) may be due to failure of either or both of the
guidelines set forth previously. But on the other hand, satisfaction of equation (32)
does not necessarily imply that both of the guidelines are met. In particular, it is
possible to construct an example where equation (32) is always satisfied and yet the
element does not meet guidelines (a) and is unsuitable as a primary building block for
general situations.

The concept of the "building block" has been introduced as being self-evident. Perhaps
some elaboration in connection with the specific example in question is justified on this
point. It has been implied in the formulation thus far that planar regions would be approx­
imated with an arbitrary assemblage of triangles (or other simple shape). This is basic to
the finite element method. The properties ofeach such element is desired along with a means
of providing the necessary equilibrium continuity requirements. To provide this element,
it will be formed of an assemblage of basic elements whose properties have been developed
so far, but which must be assembled in a particular manner which avoids the instability
problems outlined above. The building block suggested here is shown in Fig. 2.

For this assembly it is seen that M is 21 and N is 24 and equation (32) is satisfied. Since
there are no redundant equilibrium conditions in the assembly, it is not necessary to reduce
out the interior cuts. That is, one may approximate the region under consideration with a
group of triangles such as 1-2-3 in Fig. 2 in an arbitrary manner and then let the computer
introduce the additional cuts, such as 01, 02, and 03 in Fig. 2. The solution may then proceed

(I) (I)

as summarized by equation (31) without any reformulation of the [ and S involved.
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3

'~2
FIG. 2. Building block assembly for linearly varying stress field element.

However, such a procedure increases the size of M and N for the complete assembly
quite rapidly and one is led to suspect that due to the geometry introduced in the subdividing
procedure that it would be worthwhile to reduce out the interior degrees of freedom.

To accomplish the required reduction, the equilibrium equations for the assembly are
written (corresponding to equations (25». In so doing the interior force degrees offreedom
are placed at the top of fi, i.e. the equations are of the form

t~j S ~ HJ (33)

where the components of Re are the exterior force degrees of freedom and A is partitioned
as shown. Au is, of course, the matrix of coefficients of the eqIJilibrium equations obtained
by demanding continuity of the stress vector across each interior cut. In this case Au is of
rank twelve and there exists a nonsingular matrix Q (see example Beaumont and Ball [15])
such that:

(34)

a transformation is then introduced of the form:

(35)

.Q is partitioned between the 12th and 13th columns and ~' is partitioned accordingly.
Equation (35) is then introduced into the upper equations of (33) with the result:

Au .Q~' = Q

[ ]{ S'}I 0 J = 0
- -~; -'

~~ = Q.

Hence, equation (35) takes the form:

21xl 21x99xl

and the lower equations of (33) produce:

~,.Ql~; = fie

(36)

(37)

(38)
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(I)

The matrix product of .:!,QI is now considered as the matrix .f for the building block
element and the matrix~; becomes the generalized stresses. After the primary unknowns,
the ~;, are determined, the stress distribution is found from use of equations (37) and three
sets of equafions of the form of (4).

(I)

It now remains to develop the f for this building block element. This is determined
directly by substitution of equation (37) into equation (6) to give

(39)

(40)

recalling that f as used here is made up of individual seven by seven flexibility matrices
of the three elements making up the building block.

It may be noted in passing that Q is not unique and, in fact, it is not necessary to reduce
Au completely to the form shown in equation (34). All that is required is that a non-singular
square matrix appear in place of L Also it is seen that only the last nine columns of Q
are utilized. These observations may be capitalized upon in the actual reduction scheme
utilized in order to conserve computer time. The details of the reduction scheme are not
given here as it is basically a Gaussian reduction done with columns rather than rows as
is the usual scheme. For a more complete description see [12].

Finally the question of displacement field information will be considered. First of all,
provided that the trial stress solutions are compatible, then a displacement field within
each element can be found by integration. This displacement field is found, as would be
expected, only to within rigid body displacements. Also it should be pointed out that there
is no reason why compatible stress fields would not always be used since it adds no com­
plexity to the solution. In fact, for the example being developed here, the stress fields are
compatible and not by design. The compatibility is a result of the simple form of the stress
fields used.

Rigid body information is supplied only in a "mean" or integrated sense by the coeffi­
cients of the Lagrangian multiplier vector ~. This is obvious to the experienced elasticity
analyst (e.g. see Pearson [16J, pp. 146-7) and therefore the proof will not be given here.
The result is, in effect, Castigliano's theorem on displacements for a somewhat more
complicated situation than normal. The result follows:

A(k) = - Jl;Jlk)u i dS
boundary segment corresponding R o!.)"

The subscript k on the A corresponds to the kth equation of equations (25) and therefore
corresponds to the kth component of R. Equation (40) may not appear too helpful at
first and will not be unless the boundary stress modes are defined properly. For example, if
e\k) = 1 and elf) = 0, then equation (40) gives the "average" displacement in the Xl direc­
tion. Such simplicity in the stress modes is helpful in extracting information from the
solution and was considered in the choice of modes used for the example herein.

An equilibrium element has now been given which is free of peculiar properties and
which may be used in a manner consistent with the usual philosophy for finite elements.
Needless to say, there are other possibilities. A quadrilateral possibility was suggested by
Fraeijs de Veubeke [4] which can be made to work. Fraeijs de Veubeke did not give the
details necessary to utilize this element but they may be found in [12]. A suitable assembly
made up of constant stress basic elements is also given in [12].
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3. NUMERICAL RESULTS

The final test for any proposed numerical procedure is to implement it and actually
work some problems for which results are known. This was done for the linearly varying
stress field element as developed thus far.

The first problem given here is the cantilever of Fig. 3. The boundary condition is shown
in a "fixed" condition. In reality this only infers that (or forces) the generalized displace­
ments of the form of equation (40) to be zero; i.e., the integral of the displacements, both
in the x and y directions, "weighted" with a constant and a linearly varying function, are
zero. In the first solutions the "fixity" on the linearly varying component of the y-displace­
ment was relaxed. For this situation the "axial" and "moment" loads gave the exact
results for any of the element assemblies in Fig. 3 which was to be expected since the trial
solutions contain the exact stress solution. The same situation occurs if Poisson's ratio is
taken to be zero even if the above boundary condition is not relaxed.

Another check on the method was obtained from the shear loading shown in Fig. 3.

(0) (b) (c)

FIG. 3. Various cantilever element representations.

As shown by Synge [1], an "equilibrium" solution should give an upper bound on strain
energy if stress boundary conditions are imposed (this includes zero displacement boundary
conditions as well). Since the theory involved is classical linear elasticity the strain energy
stored is equal to one half of the work that would be done by the applied forces acting
through the final displacements from the unstressed state (Clapeyron's Theorem). This
says that:

;: = ~f Tu·ds'or 2 I I

For the example in question T2 is constant so that the above is:

~r = ~T2 f u2 ds

end boundary segment.

Therefore since the strain energy here is known to be an upper bound and T2 is known, then
the remaining integral (which is one of the ~ components) must be an upper bound as
compared to the integral of the true displacements.

A table of the component of~ associated with the X2 deflection of the end of the beam
is shown in Table 1 as it varies with an increasing number of elements. The compatible
solution indicated, which meets the prescribed displacements exactly and is therefore an
opposite bound, is obtained by combining the usual beam theory with a state of constant
shear strain and hence stress. Various other solutions exist to this problem with different
assumptions regarding the fixed boundary condition and the interior shear stress distribu­
tion. However, due to the aspect ratio involved, it is difficult to provide a meaningful
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comparison with these "beam type" solutions. The results are seen to be good with the
equilibrium model solutions apparently converging rapidly.

TABLE I. END DEFLECTION OF A CANTILEVER

Element assemblies are as shown in Fig. 3.
Poisson's ratio is zero and beam has unit thick-

ness

Solution Value of lJEfP

Compatible
Fig.3(c)
Fig. 3(b)
Fig.3(a)

6·0
6·60
6·62

11·7

lJ = end deflection, P = total end load,
E = Young's modulus.

The results of one other problem is given. It is the classical problem of the disc loaded
with the concentrated loads as shown in the sketch at the side of Fig. 4. The element break­
down is shown in Fig. 4 and the normal stress distribution is indicated on the bottom ofthe
figure along with the exact results as obtained from Timoshenko [17].
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FIG. 4. Disc loaded with two diametric concentrated loads.
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A significant check made here was to do this same problem twice but with different
elastic constants. Poisson's ratio was taken both at zero and 0·3 and the stress results were
the same to at least five significant figures, whereas the displacements differed. This is, of
course, the expected result.

REFERENCES
[I] J. L. SYNGE, The Hypercirc/e in Mathematical Physics. Cambridge University Press (1957).
[2] Stress Analysis, edited by O. C. ZIENKIEWICZ and G. S. HOLISTER. Wiley (1965). (This book contains articles

by R. W. CLOUGH, B. FRAEIJS DE VEUBEKE and others.)
[3] B. FRAEIJS DE VEUBEKE, Upper and lower bounds in matrix structural analysis. AGARDograph No. 72.

Pergamon Press (1964).
[4] B. FRAEIJS DE VEUBEKE, Bending and stretching of plates, special models for upper and lower bounds.

Con! on Matrix Methods in Structural Mechanics, Wright-Patterson AFB, Oct. 26-28,1965.
[5] G. SANDER and B. FRAEIJS DE VEUBEKE, Upper and lower bounds to structural deformations by dual analysis

in finite elements. AFFDL-TR-66-199, AD812876 (Jan. 1967).
[6] B. FRAEIJS DE VEUBEKE and O. C. ZIENKIEWICZ, Strain-energy bounds in finite-element analysis by slab

analogy. J. Strain Analysis 2, 265-271 (1967).
[7] R. W. CLOUGH and J. L. TOUCHER, Finite element stiffness matrices for analysis of plate bending. Proc. Con!

on Matrix Methods in Structural Mechanics, AFFDL-TR-66-80 Wright-Patterson AFB, Ohio, Oct. 26-28,
1965.

[8] L. S. D. MORLEY, A triangular equilibrium element with linearly varying bending moments for plate bending
problems. JI R. aeronaut. Soc. 71, 715-719 (1967).

[9] A. HESSEL, Analysis of plates and shells by matrix methods. SAAR tech. Note 48 (1961).
[10] R. P. SHUBINSKI, Bounds on the generalized plane stress problem by a method related to the Synge hypercircle.

Ph.D. Thesis, U. of California, Berkeley, California (1965).
[II] I. S. SoKOLNIKOFF, Mathematical Theory of Elasticity. McGraw-Hili (1956).
[12] V. B. WATWOOD, JR., A study of the equilibrium model for use in finite element analysis. Ph.D. Thesis, U. of

Washington, Seattle, Washington (1966).
[13] B. KLEIN, A simple method of matrix structural analysis, Part I. J. aeronaut. Sci. 24 (Jan. 1957).
[14] J. H. ARGYRIS and S. KELSEY, Energy Theorems and Structural Analysis. Butterworths (1960). Reprinted

from a series in Aircraft Engineering, 1954-1955.
[15] R. A. BEAUMONT and R. W. BALL, Introduction to Modern Algebra and Matrix Theory. Holt, Rinehart &

Winston (1954).
[16] C. E. PEARSON, Theoretical Elasticity, Harvard Monographs in Applied Science Number 6. Harvard Univer­

sity Press (1959).
[17] S. TIMOSHENKO and J. N. GOODIER, Theory of Elasticity. McGraw-Hili (1951).

(Received 28 August 1967; revised 14 March 1968)

A6cTpaKT--~BoAcTBeHHaH ~opMynHpoBKa 06WqHOA MOAenH CXOAHoro 3neMeHTa OqeHb npHrOAHa AnH
Hpe3yeMoMpeHHH OrpaHHqeHHA BTOqHOM peweHHH. 3neMeHT, none HanpHlKeHHH KOToporo YAosneTBopaeT
AH~<ilepeHl.IHanbHWM ypaBHeHHHM paBHOBeCHH, H cBH3aHHbiA C conpHlKeHHblMH 3neMeHTaMH TaKHM
cnoco60M, qTo6bl o6ecneQHTb HenpepHBHOCTb HKBeKTOpa HanpHlKeHHH napannenbHO BceM KpaHM npeA­
CTaBnHeT Tpe6yeMYIO ABoMcTBeHHocTb.

OnpeAenHeTcH npHroAHaH MOAenb paBHOBeCHH, C l.IenbIO Hcnonb30BaHHH ee Ha npaKTHKe AnH cxeMbl
KOHeQHOrO 3neMeHTa. YKa3blBaIOTCH HanpaBneHHH AnH ~opMynHpoBKH APyrHx 3neMeHyoB H onHCblBaIOTCH
npHQHHbl TPYAoeMKOCTH, KOTopwe 6bInH npHQHHOA xnonOT npeAblAYILIHX HccneAoBaTeneA.

~aIOTcH QHCneHHble paCQeTbl, KOTopble cnylKaT AnH HnnIOCTpal.lHH H AOKa3aTenbCTBa npeACTaBneHHblx
HAeM.


